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Abstract
The usual way of minimizing the total energy of a planar boundary between two
crystals by relaxing the atomic positions is inefficient, because it does not exploit
the physical insight that forces are localized near the interfaces or surfaces. I
introduce a simple change of variables, which leads to much faster and more
accurate relaxation in such systems. In general the method is formulated for
three-dimensional monoclinic supercells with sides (a, b, c), subject to periodic
boundary conditions. If the crystals fill space the method exploits the stress
tensor in the supercell to adjust its side c, where the boundary lies in the (a, b)

plane, but the stress tensor is not required for a slab of finite thickness, which
would be simulated by including a vacuum layer in the supercell. In either case
the number of conjugate gradient steps required to relax the atomic positions
does not increase with the thickness of the system. The power of this method
is demonstrated by calculations on one-dimensional chains, both finite and
infinite, using a pair potential to calculate the energy, forces and stresses.

1. Introduction

The general problem of finding the minimum energy configuration of the atoms around defects
in crystals is relevant to the diverse fields of solid-state chemistry, materials science and
geology. Mike Norgett’s seminal contributions helped the field of atomistic simulation to
take off in these disciplines, notably in his paper with Fletcher on fast matrix methods [1]
and in his construction of the HADES code [2] which became the basis for a generation of
scientists in which to devise sophisticated atomistic relaxation codes for defects. One such
code, CHAOS, that included surfaces and interfaces, was developed and exploited extensively
by Tasker and co-workers [3] and there were short steps to calculating phonon frequencies and
free energies using the relaxed coordinates and applying the methods developed to problems
in the earth sciences [4].

This paper deals with the common computational problem in materials science (see, for
example, [5] for some case studies) of how to optimize the configuration of atoms and find
the minimum total energy of planar boundaries with periodic boundary conditions. Periodic
boundary conditions are a convenient tool in conjunction with first-principles or ab initio
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Figure 1. The supercell, its sides (a, b, c) and the new variables ξi .

methods of calculating total energies, which nowadays can handle hundreds of atoms, e.g. [6],
and will soon be dealing with thousands of atoms on a routine basis. My suggestion is that
traditional methods of energy minimization, such as Newton–Raphson or conjugate gradients,
although they work, are inefficient because they take no account of our prior knowledge that
the relaxations are concentrated near the boundary. The straightforward change of variables
introduced here, which mathematically represents a specific nonlinear preconditioning, leads
to a dramatic reduction in computation time for such problems compared to a straightforward
conjugate gradients method.

Let us consider an interface described by two juxtaposed crystalline slabs or grains, as
we shall call them. The slabs are infinite in the (x, y) plane but of finite thickness in the
z direction. Periodic boundary conditions on a cell containing the atoms (the supercell) are
applied in all three directions. The lattice vectors (supercell vectors) in the (x, y) plane are a
and b, and for interface calculations these will normally be held fixed, because we normally
want to simulate the situation in which one of the grains is thick enough to impose constant a
and b. The third lattice vector c = (cx , cy, cz) may be treated as a variable. The supercell may
include a layer of vacuum: in this case it includes two free surfaces besides the interface. Or it
may be solid throughout, in which case the supercell contains two interfaces and its periodic
extension represents a multilayered structure of alternating slabs. In the latter case one would
like to construct the system so that these boundaries are equivalent, although this is not always
crystallographically possible. Supercells may contain anything from tens to millions of atoms,
depending on the physical system one is simulating and whether ab initio methods, in which
electronic wavefunctions are obtained, or computationally much faster empirical potentials
are used to describe the interatomic forces. I concentrate here on supercells because most
techniques for energy minimization in solids, based on electronic structure calculations, work
with them. A very similar idea for relaxing interfaces between semi-infinite crystals with just
two-dimensional periodicity was developed and applied in the 1980s by Sutton and co-workers
and is described in [7]. The present method differs in essence by exploiting the stress tensor,
where appropriate.

The problem at hand is to relax the atomic positions so as to minimize the total energy
E({ri}, c), where the index i labels the atom at ri = (xi , yi , zi ). These relaxations, by whatever
method they are performed, tend to require a large number of iterations and it is easy to see
why. When the atomic positions are relaxed, e.g. by a conjugate gradients method, at constant
c, the first coordinates to be varied by the minimization algorithm will be those at or near the
interface (or surface). Far from an interface or surface there will be no forces on the atoms,
assuming they have been set up at their bulk equilibrium crystal positions. This is still true if
there is a homogeneous strain in the crystal, in which case there is a homogeneous stress but
no forces, because forces can be thought of as arising from a stress gradient. The relaxation
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of the atoms near the interface will initiate a wave of displacement, travelling from iteration
to iteration away from the interface, reflecting from the next interface or surface, and only
gradually decaying to zero.

To enable relative bulk translations of the grains, either to change the excess volume or
to allow a sliding displacement of the grains, it may be geometrically necessary to relax the
cell side c besides the atomic coordinates. This will be unnecessary if and only if there is a
vacuum layer of sufficient width that interactions across the vacuum are negligible, because in
that case the grains are free to make relative translations and relax all the stresses and forces
within a fixed supercell. Note that our physically motivated wish to keep a and b constant
implies that we are not interested in relaxing stress components σxx , σxy and σyy, but we shall
want to relax the other three. Energy minimization with respect to the cell sides is made more
efficient if we have access to these stress components. In this case the derivatives of the energy
with respect to the components of c are given by

1

A

(
∂ E

∂cx
,

∂ E

∂cy
,
∂ E

∂cz

)
= (σzx , σzy, σzz) (1)

where A is the area of the supercell in the plane of the interface:

A = |a × b|. (2)

The derivatives in (1) are not at constant atomic positions {ri} but at constant fractional
positions (Xi , Yi , Zi) of the atoms in the supercell, where

ri = Xi a + Yi b + Zi c. (3)

This corresponds to the usual definition and calculation of stress, which refers to a homogeneous
deformation of the specimen. We thus introduce a second complete set of variables for
describing the system, namely ({Xi , Yi , Zi }, c). There is no particular condition imposed
on (a, b, c), although in practice they are often orthonormal, which somewhat simplifies the
equations. I emphasize that we are only considering a scenario in which a and b always remain
constant. The explicit expressions for the fractional variables are

Xi = ri · u Yi = ri · v Zi = ri · w, (4)

where (u, v, w) are the dual lattice vectors:

u = 1

�
b × c v = 1

�
c × a w = 1

�
a × b (5)

and � is the volume of the supercell:

� = a · (b × c). (6)

It will be convenient to use a common vector notation for derivatives, so that, given any
scalar f that depends on any vector k, we define the Cartesian vector:

∂ f

∂k
=

(
∂ f

∂kx
,

∂ f

∂ky
,

∂ f

∂kz

)
. (7)

The forces on the atoms are given by

Fi = −∂ E

∂ri
(8)

and the derivatives with respect to fractional coordinates are given by the non-Cartesian triplet:(
∂ E

∂ Xi
,
∂ E

∂Yi
,

∂ E

∂ Zi

)
=

(
∂ E

∂ri
· a,

∂ E

∂ri
· b,

∂ E

∂ri
· c

)
. (9)
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If we need to allow c to vary, the derivative ∂ E/∂c can be used in the minimization
algorithm on the same footing as the forces on atoms or as (∂ E/∂ Xi , ∂ E/∂Yi , ∂ E/∂ Zi) if we
are working in relative coordinates. However, this does nothing to alleviate the convergence
difficulty mentioned above, for the calculated stress will initially be due to the forces on
atoms near the interface, whereas what one would like to happen is for the algorithm to leave
untouched the interatomic spacings within the bulk of the grains, while relaxing the interlayer
spacings near the interface (and surfaces if present). What current algorithms will actually
do is to uniformly strain the system. Although this is the natural response conjugate to the
stress, it introduces an erroneous strain in the grains that must be laboriously removed during
subsequent iterations. This difficulty is overcome by the new procedure described below.

2. Change of variables

Suppose there are N atoms, labelled i = 1–N . The atoms are permanently labelled to start
with in order of increasing zi , but it should not matter if this order changes during the course
of the iterations. If several atoms have the same value of z, they can be indexed in any order.
Define

ξi = ri+1 − ri , {1 � i < N} (10)

and

ξN = r1 + c − rN . (11)

These are the new variables (see figure 1). We have traded N + 1 variables for N , but
there was a degree of freedom too many in the original set of variables, because the energy is
invariant to translations. Thus we set r1 = 0 without loss of generality.

At first glance it looks as if ξN has a special status. However, this is not the case because
of the periodic boundary conditions. Atom 1 has an image at r1 + c which we can think of
as atom N + 1. The new variables describe all the independent interatomic distances in the
infinite periodic system. Unlike the original set of variables, among which the supercell sides
have a special status compared to the atomic positions, the new variables are all on an equal
footing, which is advantageous for the relaxation algorithm.

The inverse transformation of variables is

ri = r1 +
i−1∑
j=1

ξ j , {1 < i � N} (12)

c =
N∑

j=1

ξ j . (13)

I emphasize that r1 is an arbitrary constant. Using these transformations, the variables ξi can
be passed to a standard minimization routine, which within a line minimization will have to
call a routine to calculate the energy E({ξi }) and probably its derivatives ∂ E/∂ξi . That routine
will first make the back transformation to ({ri}, c) variables before calculating the energy and
forces by established routines. These familiar forces will have to be converted to the conjugate
forces ∂ E/∂ξi before the line minimizer can use them, as described in the following section.
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3. Conjugate forces

3.1. Derivation

It remains to obtain expressions for the forces conjugate to the ξi , or in other words the energy
derivatives ∂ E/∂ξi . This is a matter of applying the chain rule of partial differentiation:

∂ E

∂ξi
=

N∑
j=2

(
∂ E

∂ X j

∂ X j

∂ξi
+

∂ E

∂Y j

∂Y j

∂ξi
+

∂ E

∂ Z j

∂ Z j

∂ξi

)
+

∂ E

∂c
. (14)

The terms for j = 1 are excluded on the assumption that (X1, Y1, Z1) will be held equal to
zero. We have also used ∂c/∂ξi = 1. The factors ∂ E/∂ X j , ∂ E/∂Y j and ∂ E/∂ Z j are given
in equation (9) in terms of the conventional forces. We now require expressions for the ξi

derivatives: this is a straightforward exercise in applying the chain rule. Consider first the X j

derivative and write

∂ X j

∂ξi
= ∂ X j

∂x j

∂x j

∂ξi
+

∂ X j

∂y j

∂y j

∂ξi
+

∂ X j

∂z j

∂z j

∂ξi
+

∂ X j

∂c

∣∣∣∣{rk}
{ j > 1} (15)

in which on the right-hand side X j is regarded as a function of {rk} and c. Using equation (4)
we find

∂ X j

∂x j
= ux

∂ X j

∂y j
= uy

∂ X j

∂z j
= uz . (16)

Similar equations hold for the position derivatives of Y j and Z j . From (12) we find

∂x j

∂ξi
= (1, 0, 0)

∂y j

∂ξi
= (0, 1, 0)

∂z j

∂ξi
= (0, 0, 1) {i < j} (17)

∂x j

∂ξi
= ∂y j

∂ξi
= ∂z j

∂ξi
= 0 {i � j}. (18)

The c derivatives are given, after a little vector calculus, by

∂ X j

∂c

∣∣∣∣{rk}
= −Z j u

∂Y j

∂c

∣∣∣∣{rk }
= −Z j v

∂ Z j

∂c

∣∣∣∣{rk }
= −Z j w. (19)

After substituting these derivatives into (14) we find in terms of the usual variables

∂ E

∂ξi
=

N∑
j=1

Z j {(F j · a)u + (F j · b)v + (F j · c)w}

−
N∑

j=i+1

{(F j · a)u + (F j · b)v + (F j · c)w} + (σzx , σzy, σzz)A

=
N∑

j=1

Z j F j −
N∑

j=i+1

F j + (σzx , σzy, σzz)A. (20)

For i = N the second summation should be omitted. Notice that I have reinstated the j = 1
term in the first summation. This is allowed trivially by our assumption that Z1 = 0. However,
it is not restricted to that assumption. For suppose we displace the supercell,such that a constant
term is added to all the fractional coordinates, including Z1. Because the forces must sum to
zero, this makes no difference to the summation in (20). Equation (20) is the central result we
need, expressing the new energy derivatives in terms of the familiar forces on atoms and the
stress in the supercell.
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3.2. Comment on the case of a vacuum layer

Supercell calculations are often designed to include a vacuum layer, either to simulate surfaces
deliberately or to avoid an awkward second boundary that might, for example, complicate a
study of the energy of a single boundary. It is natural to label the atoms 1–N across the slab,
in which case the absence of interactions across the vacuum implies that

∂ E

∂ξN
= 0. (21)

The three σzα stress components in this situation are directly expressible in terms of forces
on the atoms (although the other three are not) and there is no need to relax the shape of the
supercell by changing c. It is easy to show that in this case, with the natural numbering of
atoms,

(σzx , σzy, σzz) = − 1

A

N∑
j=1

Z j F j (22)

so that equation (20) reduces to

∂ E

∂ξi
= −

N∑
j=i+1

F j {i < N}. (23)

Equation (23), which represents a linear preconditioning, is the appropriate formula to use for
simulating bicrystals, or simply if a slab of single crystal is set up to simulate free surfaces
without any internal boundary. It has a simple interpretation. The summation on the right-
hand side represents the total force on the block of atoms to the right of the interplanar spacing
described by ξi . To relax the conjugate force, that block will move rigidly, without disturbing
its crystal structure, which is physically what one would want.

4. Test calculations

As a preliminary to a full implementation of this approach I have made some test calculations
for a simple one-dimensional model, consisting of a chain of N atoms interacting through an
arbitrarily chosen 4–8 potential of the Lennard-Jones form:

V (r) = 4ε((σ/r)8 − (σ/r)4), (24)

with a cut-off at r = 3σ . The chain was set up at its bulk equilibrium interatomic spacing,
a0 = 1.172 461σ . Two very different situations were considered. In the situation I will call the
‘free chain’ the N atoms were terminated by a ‘vacuum layer’ of the same length Na0 as the
chain, so the repeat length of the supercell was chosen to be L = 2Na0. For practical purpose
this is equivalent to a free finite chain and we want to relax its ‘surfaces’. In the second situation,
the ‘infinite chain’, the chain was periodically repeated in a continuous fashion by choosing
a repeat length of L = Na0, but to provide an ‘interface’ atom N was shifted back along the
chain by 10% of the interatomic spacing. For the infinite chain, besides the fractional atomic
positions of atoms 2–N , the stress is relaxed by including the repeat length L as a variable in
the energy minimization.

The ‘old’ relaxation procedure, for which I report results in table 1, uses standard
Fletcher–Reeves conjugate gradients, as described in [8]. In this 1D case the variables are
({Zi}, cz; 1 < i � N) for the infinite chain. The convergence criterion I have used throughout
is to reduce the maximum force on any atom to below 10−4ε/σ and the fractional energy
change per iteration to 10−7. The ‘new’ relaxation procedure, results of which are also
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Table 1. Number of conjugate gradient iterations required for convergence using ‘old’ and ‘new’
algorithms for two systems. ‘Free chain’ is a finite chain of length N atoms, which start equally
spaced. ‘∞ chain’ is a periodically repeated chain of N atoms, of which 1 is initially displaced by
10% of the nearest-neighbour distance.

Free chain ∞ chain

N Old New Old New

10 9 2 41 8
20 16 2 29 8
30 21 2 37 8
40 26 2 46 8
50 24 2 56 8
60 29 2 66 8
70 35 2 76 8
80 39 2 72 8
90 44 2 72 8

100 49 2 72 8
120 59 2 72 8
140 65 2 72 8
160 65 2 72 8

in table 1, uses exactly the same minimization algorithm and convergence criterion on the
maximum force on an atom and energy change, but it iterates on directions in the space of
the variables ({ξi z}; 1 � i � N). For the free chain the variable Z1 was included in the ‘old’
relaxation procedure, which approximately halved the number of iterations required because
the symmetry of the system is thereby preserved.

The supercell length L for the free chain plays no part in the relaxation. It would do so in
the old relaxation procedure if we used the stress to change the length of the supercell as we
do in the infinite chain.

5. Results and discussion

The results in table 1 illustrate the very rapid convergence of the preconditioned algorithm,
which requires 2 line searches for the free chain and 8 for the infinite chain, independent of
chain length. This is as expected, since the algorithm only adjusts the interatomic spacings
very near the surfaces of the chain or near the defect, respectively. On the other hand the
standard conjugate gradient method, starting with a line search in the direction of steepest
descent, requires a number of iterations that scale roughly linearly with the number of atoms
until it reaches a plateau of 72 iterations for the infinite chain or 65 for the free chain. What
is happening here was confirmed by watching a movie of the relaxation in which the atoms
were coloured according to the forces on them. A soliton-like wave of disturbance propagates
from the defect or surface into the chain, at a rate of one atom per iteration, gradually decaying
in amplitude and spreading as it does so. The maximum force within this disturbance must
travel through about Nc = 70±5 atoms before its amplitude has decayed sufficiently to satisfy
the present maximum force convergence criterion. For the infinite chain with more than this
number of atoms, the ‘old’ method does not need to adjust atomic positions further from the
defect than Nc atoms, so the number of iterations becomes constant for N > Nc.

For the free chain, there are two surfaces from which the ‘old’ method causes equivalent
disturbances to propagate and convergence occurs roughly when they meet in the centre of
the chain or when they have travelled Nc atoms, whichever happens first. For N > 2Nc the
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relaxation therefore terminates in about 2Nc iterations. Note that this does not imply that the
computation time becomes independent of N , because not only do all the forces have to be
calculated at every iteration, but also the line search associated with each iteration itself requires
more iterations as the number of variables increases. In large systems the new algorithm simply
never disturbs the regions so far from the interfaces as the old one does and therefore involves
fewer variables in the line searches.

6. Summary and conclusions

I have introduced an algorithm for relaxing surfaces and interfaces comprising N atoms in
a supercell, with periodic boundary conditions. It is based on using N interatomic vectors
ξi , (1 � i � N), as variables and requires much fewer conjugate gradient (CG) relaxations
compared to applying the CG method directly to the individual atomic positions and (where
appropriate) supercell sides. Two typical simulation situations can be distinguished. In the first
the supercell (a, b, c) describes non-interacting slabs in the (a, b) plane, separated by vacuum
layers. In the second it describes a space-filling multilayer of slabs. In the second situation,
three components of the stress tensor, namely σzα, (α = x, y, z), are required to completely
relax the energy of a supercell at fixed (a, b). In the conventional approach they would be
used to relax side c of the supercell, but in the new approach they enter the expression (20)
for the forces conjugate to the ξi , and c is slaved to these new variables. In both situations the
new algorithm converges within a constant number of CG steps that does not increase with
the thickness of the slabs. The conventional approach requires a number of CG steps that
scales linearly with the thickness of the slabs up to a maximum that depends on the maximum
force allowed when convergence is deemed to have been reached. Simple one-dimensional
calculations have verified the effectiveness of the method and suggest that it can save orders
of magnitude in computer time. This is likely to be of particular value in large scale ab initio
calculations.
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